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The dynamics of unsteady interactions in a system consisting of a punch and an elastic layer is studied. 

It is shown that the system can theoretically accumulate as large an oscillation energy as desired. The 

mechanism of releasing the stored energy is also studied. The efficiency of the system as an oscillation 

energy accumulator is studied numerically. The mechanism by which this energy is released when the 

mass of the punch changes instantaneously is analysed. 

We know that the oscillations of an ideally elastic body of finite dimensions can be 
characterized by a denumerable system of natural resonance frequencies and corresponding 
eigenfunctions. Under a harmonic load, the frequency of which coincides with a resonance 
oscillation frequency of the body, the oscillation amplitudes increase with time without limit. 
As opposed to a body of finite dimensions, an ideally elastic layer has no natural modes of 
oscillation. However, it has been established [l] that a finite number of natural frequencies 
with corresponding natural modes of oscillation can exist in a punch-layer system. This effect, 
referred to as an isolated resonance [l], was studied and generalized in [2, 31 and became 
known as the B-resonance. In a punch-layer system subject to a harmonic resonance load the 
oscillation amplitudes increase without limit, as in the case of a body of finite dimensions. As a 
consequence, an oscillation energy as large as desired can theoretically be “accumulated” in the 
system. The distribution density of this energy in the layer is determined by the eigenfunctions 
of the punch-layer system, which, as has been shown in [4], decay exponentially with distance 
from the punch. The energy of the natural oscillations can therefore be considered localized in 
the neighbourhood of the punch. The energy of the natural oscillations can therefore be 
considered localized in the neighbourhood of the punch. 

Suppose that in a steady natural mode of oscillation the parameters of the punch-layer 
system are altered, while the total energy remains unchanged. The system undergoes a 
transition into a natural mode of oscillation with different frequency, the energy connected 
with the new mode of oscillation being localized near the punch. The difference between the 
steady oscillation energies before and after the change of parameters is the energy radiated to 
infinity. In what follows it will be proved that the entire stored oscillation energy can be 
reradiated to infinity as a high-energy impulse. The values of the displacement amplitudes in 
this impulse can be much larger than those generated by a source of the same power without 
the storage of energy in the system. 

As a result, a punch-layer system can exhibit the properties of both an ideal body of finite 
dimensions, namely, the presence of natural modes of oscillation, and an unbounded 
continuum, namely, energy radiation to infinity. The processes of energy storage and the radia- 
tion of a high-energy impulse in the system resemble the principles governing pulsed lasers. 
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We shall investigate those relationships between the parameters that give rise to B- 
resonances in the system and study the processes of energy storage and reradiation. 

l. We shall prove theorems that hold for a large class of continuous media of finite as well as 
infinite dimensions. These theorems can be used in the study of a punch-layer system to find 
the exact boundaries of the domain of existence of a B-resonance in the case of oscillations of a 
massive punch normal to the surface of the layer. In addition, the results can significantly 
simplify the analysis of the energy balance of the system. 

Let f2 be a domain occupied by an elastic continuum with an arbitrary linear equation of 
state 

ojk = cjh Em I Ejk =1/2(Uj,k+Uk,j) (1.1) 

where op, ejk, uj are the components of the stress tensor, the strain tensor, and the displace- 
ment vector at a point of the medium, respectively, and Cj, are the components of the elastic 
modulus tensor having the well-known symmetry and positive definiteness properties [5]. We 
assume that Cjh, are sufficiently smooth functions of the coordinates. The index notation 
traditionally adopted in continuous medium mechanics is used in (1.1) and in what follows. 

We consider steady oscillations of a continuum subjected to an external periodic load (the 
time dependence being expressed by the multiplier e-“). On separating the variables, we write 
the equations of motion in the form 

bjk,k +O’PUj +PFj =O (1.2) 

where p is the density of the medium and F;. is the amplitude function of volume forces. 

Theorem 1. If the stress and strain fields satisfy the Gauss-Ostrogradskii conditions in an 
arbitrary domain R with smooth boundary S, then 

where lj is the outward normal vector to S. 
This theorem is an analogue of Clapeyron’s theorem [S] and can be proved in a similar way. 

The overbar denotes a compled conjugate quantity. In the case of real-valued fields, II(o) and 
K(w) are the maximum values of the potential and kinetic energy of the elastic medium, 
respectively. 

We will now consider the problem of an absolutely rigid body (the punch) in contact with an 
elastic continuum, the latter occupying a domain &2 with boundary S. The punch undergoes 
harmonic oscillations of amplitude IV, and direction n, the contact domain S, between the 
punch and the’medium remaining unchanged during the oscillations, which means that the 
punch and the medium do not secarate. Homogeneous conditions of the first, second, or third 
kind are given on S away from the die. In the following results we can restrict ourselves, 
without loss of generality, to conditions of the first and second kind. We assume that there are 
no mass forces. Let us write down the boundary conditions on S = S, u S, u S, 

on SO 

on S2; ojklk = 0 on s, 

Note that for unbounded domains the boundary-value problem (l.l)-(1.3) must be supple- 
mented by radiation conditions. In addition, to ensure that the mixed problem is well posed, 
we will impose restrictions on the behaviour of the solution on the boundary of the contact 
domain S,, [4]. 
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We set r,,(o) = 2(11(w)-K(m))/ W:. It is easily seen that r, is the dynamic rigidity of the 
medium, Le. its reaction to unit amplitude oscillations of the die. By the linearity of the prob- 
lem under consideration, II(w) and K(w) are proportional to W:, which means that r, is 
independent of W,. 

Co~o~~~~~ 1. Under the hypotheses of Theorem I, Y,(O) = II(O) a 0. 

Note that for bodies of finite dimensions as well as for some semi-bounded continua (for 
example, a layer or a half-plane) n(w) -+ 0 as w + 0 if the stresses are given on the boundary 
outside the contact domain S,, (conditions of the first kind). 

~~eo~e~ 2. If the solution of the bo~dary-value problem (1.1)-(1.3) in an arbitrary domain 
52 {bounded or unboun ded) satisfied the hypotheses of Theorem 1 and is real-valued and 
analytic in w, then dr, ldw = -4K(w)/oW:. 

Due to the symmetry of the components of the elastic modulus tensar 

Hence, using Theorem 1, we find that 

2 4 au. 
wO ;I;;; = 2pj& aw !Q dCt-2W2fpUj~ ’ d$l-Zw~PUjUjdQ 

n 

Applying the gauss-~strogradskii theorem to the right-hand side, we get 

2 &I 
WJ -=Zl(cTjk,~ +W2Puj) dw air, L;Is;1 4K(w) 

dcu R 
--++la,I, au, ds 

W sJ dw 

The first term on the right-hand side vanishes by virtue of (1.2). The surface integratl a&so 
vanishes, because the stresses on S, are equal to zero by (l-3), and, by the anaIyticity of the 
solution in w, we have auiaw = 0 on S, and dun /aw =p 0 on S,,. 

Coralfary 2. Under the hypotheses of Theorem 2, dr, /do < 0. 

Remarks. Theorem 2 hoids when conditions of the third kind are given on the boundary S or 
some part of it. 

AlI the results presented above hoId for any elliptic wave equation with the appropriate 
modifications in the expressions for the potential and kinetic energies and the boundary 
conditions. 

2. Consider the oscillation of a massive punch normal to the surface of an elastic layer of 
thickness H. We will assume that the elastic mod&i C,, depend on the x,-coordinate normal 
to the planes constituting the boundaries of the layer. The boundary X, =0 of the layer is 
rigidly attached to a non-deformable support, i.e. S, coincides with the plane xj = 0. On the 
boundary X, = H the stresses are equal to zero everywhere outside the contact domain 
between the punch and the layer. Therefore, we assume that n= e, in (1.3) (one of the unit 
vectors of the Cartesian system of coordinates) and the outward normal vector I to S, is equal 
to e3. We shall write the equation for the oscillations of the punch in the form 

-q,w2 W, = R,(w),R3(a) = - jo,,dS 
s, 

(2.1) 

where m, is the mass of the punch. 
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Assuming that there are no volume forces in (1.2), we shall study the eigenvalues of the 
boundary-value problem (l.l)-(1.3), (2.1). We shall state a number of properties of the 
boundary-value problem (l.l)-(1.3) which will be used in our study. Their proofs are given in 
PI. 

Property 1. There exists w, > 0 such that for o E (--ol, +w,) the energy solution is real- 
valued and decays exponentially at infinity. 

Property 2. the solution is analytic in w everywhere on the real axis, except for a denumer- 
able io, (k = 1, 2,. . . ). 

Property 3. For all positive o > o, ImZ?,(w) G 0 and R3(-w) = R,(o). 

We note that the sign of the imaginary part Z?,(w) is determined by the time dependence 
expressed by the factor emiwf, which has been chosen at an earlier stage. We set m. =limr,(o)l 
w2 as w + w,, where r’(o) = r”(o) (n = e,). Since the boundary-value problem (l.l)-(1.3) is 
linear, R,(o) = W,r3(o). Substituting this relationship into (2.1), we obtain the characteristic 
equations from which to determine the eigenvalues 

r-3(0)-m&=0 (2.2) 

Theorem 3. For any m, >m the boundary-value problem (l.l)-(1.3), (2.1) has two eigen- 
values fo, of multiplicity one belonging to the interval (--oi, +o,). 

The proof of this theorem follows from the results presented in the previous section and the 
aforesaid properties of the solution of the boundary-value problem (l.l)-(1.3) for a layer. 

The existence of B-resonances in a punch-layer system for sufficiently large values of 
the mass of the punch was proved in [l]. Theorem 3 establishes the precise boundary of the 
domain of existence of a B-resonance in a system in which the oscillations of the punch are 
normal to the surface of the layer. 

In Fig. 1 we show the domains of existence of B-resonances for an isotropic elastic layer (the 
plane problem) for various values of Poisson’s ratio 6 using the axes M-’ (M = m,, l(pH’)) and 
L = lg(alH). The layer interacts with a strip-shaped punch of linear mass m, and transverse 
dimension 20. The domains of existence of an isolated resonance lie below the curves. As can 
be seen in Fig. 1, the boundary of the domain depends strongly on Poisson’s ratio of the 
material. 

Computations indicate that for a punch rigidly attached to the layer as well as for a punch in 
frictionless contact with the layer, the domains of existence of B-resonances are practically the 
same. All numerical results were obtained for problems involving frictionless contact. 

The computations were carried out using a software package for solving a large class of 
mixed dynamic problems for semi-bounded domains. the solution algorithm is based on a 
modification of the boundary element method. 

Corollary 3. The expression 

(2.3) 

holds for the total energy of characteristic oscillations of the punch-layer system. 
This expression follows from the fact that for sinusiodal (due the solution being real-valued) 

natural oscillations of the system the potential energy vanishes simultaneously at all points of 
the elastic continuum (i.e. the total oscillation energy of the system is equal to its maximum 
kinetic energy) and from the law of conservation of energy (no radiation at infinity). 

In Fig. 2 we show the specific energy of natural oscillations of the punch-layer system. Here 
the specific energy is understood as the total energy of the system per unit amplitude of 
oscillation of the punch. The coordinate axes in the horizontal plane are the same as in Fig. 1, 
the specific energy being measured along the vertical axis. As the boundary of the domain of 
existence of a B-resonance is approached, the specific energy tends to infinity. The surface in 
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Fig. 1. Fig. 2. 

Fig. 2 represents the variation of the specific energy in the domain of existence of a B- 
resonance and its growth as the boundary is approached. In Fig. 2, in a very narrow neighbour- 
hood of the boundary the energy gradient becomes so large for small values of a/H that it 
cannot be represented graphically. 

3. We shall investigate the process of energy accumulation in the system. Let the system be in 
a state of rest for t < 0. At t = 0 a load P(t) is applied to the punch, so that the punch begins to 
advance in the normal direction to the surface of the layer. We shall write down the equations 
together with the initial and boundary conditions of the problem under consideration 

0jk.k - Pa’Uj I at2 = 0 

0 j& =Cj~E~3 &j& =yZC”j,k +9,j) 

(3.1) 

U= w(t)e, on Sa, 
0 on S2; Ojkik =0 on St (3 2) 

m,, 9 = P(t)+ R,(t), As(t) = - jo,dS (3.3) 
s, 

u=O, aU/&=o; W=o, dw/dt=o, t=o (3.4) 

We apply a Fourier transformation with respect to the initial boundary-value problem (3.1)- 
(3.4). We shall use the same symbols for the transforms as for the original functions, specifying 
whether they depend on the time or frequency, if necessary. For example 

P(O) = yP(t) exp(ior) dt, Imo = 6 > 0 
0 

On applying the transformation, we get 

w(t) = -(27~)-‘+~~‘*P(o)[mo~ - Q(cn)]-‘exp (-iw)da 
--+I 

(3.5) 
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The work done by P (or the energy received by the system) is 

A(r)=;P(t)%dt 
0 

If the force acts during a bounded time interval, the work can be written as 

A(t)=-1 
+c-+iS 

2ffi I _ 
-+i (3.6) 

P*(w) = IP(t) exp (-iw)dt 

0 

for long times t. 
We shall assume that the punch-layer system is such that the hypothesis of Theorem 3 holds 

for the corresponding boundary-value problem, i.e. there is a B-resonance +w, in the system. 
By taking the limit as 6 -_) +0 in (3.6), we get 

A=w,(P(w0)~*[2m000-dr,(oo)/dw]-I+%, 

A_ = -(2rci)-iV.p.‘r IP(01)i2[mow2 - r3(co)l-‘odw 
-.oD 

(3.7) 

With the same assumptions, we find from (3.5) the amplitude 

W, =21P(oo#2nq,oo -drj(oo)/dol-’ (3.8) 

of steady oscillations of the system. 
Taking (2.3) and (3.8) into account, it can be shown that the first term in (3.7) is the total 

energy of steady oscillations of amplitude W, given by (3.8). The second term A_ is therefore 
the energy radiated to infinity as the system subjected to the force P(t) undergoes a transition 
from a state of rest to a steady mode of oscillation. Note once more that the force acts during a 
bounded time interval. 

Taking Property 3 into account, we obtain the representation 

A,=- K’ TImr5(co)I ~(w)~*[m,w* - r3(a)1-*wd~ 
WI 

We observe that if there is no isolated resonance in the system, then A = A,, i.e. all the 
energy supplied to the system is radiated to infinity. 

Let us consider the process of energy accumulation in the system in the case when the 
external force P(t) has the form 

p(t) = 1 P,sin(o,t). 0 < t < 27sN / O. 
0 

. tcO,t>27cN/w, 

i.e. a periodic load is applied, the frequency of which is equal to a natural frequency of the 
system, the duration of the interaction being characterized by the number of periods N. Then 
the amplitude IV, of natural oscillations given by (3.8) is proportional to N, so that the energy 
E of natural oscillations is proportional to N2. It follows that if the amplitude of the external 
force is bounded, then the energy of natural oscillations can become as large as desired. 

The following normalized values are presented below for a system consisting of an elastic 
layer (v = 0.3) and a strip-shaped punch (a/H = 1; M = 1) for various values of N: the energy A 
supplied to the system, the accumulated energy E, the energy A., lost due to radiation, and 
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index q = (E/A) x 100% measuring the efficiency of energy accumulation 

N 1 2 3 4 10 

A 2,623 10.480 23578 41,913 261.940 

E 2.619 lo.478 23.575 41.910 261.940 

A_Xld 4 3 3 2 4 

(loo-~)x1o~ 153 27 14 5 1 

The absolute value of the energy loss due to radiation is seen to be practically independent 
of the number of periods N, while the index q approaches 100% as N increases. The results 
illustrating the dependence of A, E, A_ and q on M are presented below in the case when 
N=l 

M 0.65 0.70 1.00 2.00 100.0 

A 2.581 2.592 2.623 2.629 2.686 

E 2.491 2,565 2.619 2.629 2.686 

A,x IO3 a9 27 4 10 -0 

(100-q)x103 470 37 153 12 I 0 

Calculations show that when the mass decreases and becomes close to M. (for the given 
system M. = 0.633) the efficiency index q decreases slightly because of increased energy loss 
due to radiation. However, the amount of accumulated oscillation energy is practically 
independent of M for a wide range of masses. Therefore the punch-layer system turns out to 
be a highly efficient store of oscillation energy. 

4 We shall consider in detail the process of radiation of accumulated oscillation energy. 
Suppose that natural oscillations of frequency o, (0, being a root of Eq. (2.2)) are generated 
in the punch-layer system by a force P(t). For a long time after the force P(r) is switched off 
the oscillations of the system can be regarded as steady, i.e. the time dependence of the dis- 
placements of any point of the system can be expressed by the multiplier cos(od). Moreover, 
the energy of steady natural oscillations of the system can be expressed in the form (2.3), where 
the amplitude multiplier W, is determined by the specific form of P(t) (see (3.8)). 

Suppose that the mass of the punch changes instantanoeusly at the instant when the velocity 
of the punch is zero (we shall assume that this instant is t =O). Since the total energy of 
the system at this instant is equal to the potential energy of the elastic deformation of the 
continuum, the change of mass does not alter the total energy of the system. However, 
the characteristic frequency of the system will be altered. We shall denote by MO the new value 
of the mass of the die and by o, the corresponding natural frequency. In the mathematical 
formulation of the problem Eqs (3.1) and boundary conditions (3.2) are supplemented by the 
equation of motion of the punch 

d2w 
M,--= 

dt2 
R3(t)v R,(t) = lo,,dS 

s, 
(4.1) 

and the initial conditions 

U=Uo,aU/at=o; W=wo, hv/dt=o, t=o (4.2) 

where u, is the natural solution of the boundary-value problem (l.l)-(1.3), (2.1) correspond- 
ing to the natural frequency w,. 

We shall solve problem (3.1), (3.2) (4.1) and (4.2) by the method of integral transformations. 
We write the following expressions for the displacements of the punch 
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+on+D -iw 
w(r)= WoCOS(Wot)-(2n)-‘W,(M,o~-r,(o,)) j p exp(-iW do 

-oa+d 0: -Cl)* M*W* - ?j(O) 

By applying Jordan’s lemma to this expression and letting t -+ =, we get 

w(t) = 2w, Qo Mao; - r3(0,,) 2 
o. - Q; 

- cos(f&)t) + o(1) 
2 M&e - r;(Q, ) (4.3) 

Taking (2.3) and (4.3) into account, we can represent the energy of steady oscillations of the 
system with altered mass in the form 

Theorem 4. Let the punch-layer system be in a steady state of oscillation. Any change in the 
mass of the punch not accompanied by a change of the total energy of the system will result in 
the radiation of some energy to infinity. 

It follows from the law of conservation of energy that the energy radiated to infinity is equal 

to E, = E-E,,. Using elementary algebraic transformations and taking Corollary 2 into 
account, it can be shown that E, > 0 for any mass change. 

Corollary 4. In the frequency range w~(0, w,) the maximum value lI(w) of the potential 
energy of oscillations of the punch of amplitude IV, exceeds the potential energy of a static 
elastic deformation for the same displacement W, of the punch. 

Remark. If the new value of the mass M, cm., then the entire oscillation energy of the 
system will be radiated to infinity. As follows from Theorem 3, for such a value of m the system 
has no natural frequencies, so that E,, = 0. 

Figure 3 shows the radiated energy E, /E as a function of the change of mass of the punch. 
Curves 1,2, and 3 were obtained for various values of the linear mass of a strip-shaped punch 
(m lm, = 0.5, 0.9, 0.99) of width a/H = 1 interacting with an isotropic elastic layer (v = 0.3). 
These masses correspond to the characteristic frequencies w,/o, = 1.2, 1.517, 1.57. To 
represent the results in a convenient way and consistently with the previous graphs, the ratio 
E, lE is shown as a function of m. lh4,. For such a choice of the variable it is obvious that the 
curves touch the axis of abscissae at the points 0.5, 0.9 and 0.99 (E-/E = 0), respectively. One 
can see in Fig. 3 that an increase in mass (M,, > q) as well as a decrease are accompanied by 
energy radiation to infinity. It is, however, clear that the energy radiated as a result of a 
decrease in mass can be much larger than that due to an increase in mass. 

The behaviour of curves 1 and 2 indicates that the energy of the system is close to that of a 
static system in the range of frequencies o between 0 and 0.960,, i.e. there is virtually no 
energy radiation to infinity (less than 5%) when the punch is abruply stopped (M, = -). The 
frequency range (0.960,, ol) is therefore a rather narrow transition zone, in which the elastic 
layer is transformed from a quasistatic to a dynamic state, namely, for 61 > w, the oscillations in 
the layer are no longer sinusoidal and homogeneous propagating waves appear. This explains 
the sharp increase in the energy radiated to infinity (E_, /E + 1 as M0 + m) and the large 
gradients of curves l-3 in a small neighbourhood to the left of the point m lM, = 1, which 
corresponds to 0,. Large gradients appeared before in Fig. 2. 

We shall illustrate the radiation process by the problem of an anti-plane displacement of a 
layer by a strip-shaped punch. Let the radiation of energy be caused by “complete separation” 
of the punch and the layer. The problem can be reduced by the superposition method to 
solving the initial boundary-value problem for the wave equation in a strip with homogeneous 
initial conditions and boundary conditions of the form 
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where q(xJ is the amplitude of the contact stresses in the problem af the; Mural osciU&tions of 
the system with frequency oO when the displacement amplitude of the punch equals W,, h(1) 
being the: Heavisibe f~~~ti~~. We shall write the s&ztk~n of this problem in the form 

where 36-T = ditirsIC$ and 9 = CUH (E is the veltity of prop~~atj~ of Che tra~~erse wave), the 
finear d~m~~s~ons and ~~~~cements are normafized to N, and @{or, q) denotes the Fourier 
transform af &X,)/C with respect to x2. For large or the asymptotic expressions for the 
displacement u has the form 

The time dependence of the: displaeemeut of a point on the free surface of the layer (x3 = 1) 
computed from the above asymptotic formula is shown iu Fig. 4, in which the envelopes of the 
radiated esciltating &gnat are shown (x1 = IcN3, x, = 500)” The d~rnens~~~~~~ time z is measured 
dong t&e bor~ont~ axis and the djme~s~on~ess ~~~~~ce~~n~ &m~ the sx-~icrrl axis. T&e 
~~~~~~~~~~~ frequency showr~ in a small part of the forefrom of the impulse (Fig. 5) is equal to 
the frequency computed by the reflection method [6). We observe that the impulse becomes 
longer and the maximurr? displacemeat in the impulse decreases as the x,-coordinate of the 
observation point increases. 

,. . 

f The energy w&&xl to ~~~~~~ k ~~~~~~~~~~ Iy aa ~~t~ad~ ~rn~~~~~ in whi& tt& tke 
head and tail perturb~t~~~~ fronts can be d~st~ngu~sh~~ far away from the punch, since in B 
steady mode of osciliatfon the dispiaccment fieid decays exponentially at infinity. It follows 
from (43) that the displacements in the. impulse are proportional to Vv,, As has been observed 
before, amplitudes of the natural oscillations as large 8s desired can be attained during the 
process of energy ~~~urnu~~t~on by a system subjec&d to ex#eenral ~~~~~~~~~n~ of bowded 
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Fig. 4. 

u ‘IUU IQ. 5 125 z 

Fig. 5. 

amplitude. Considering energy accumulation and radiation as a single process, we conclude 
that the displacements in the impulse can be much larger than those generated by a source of 
the same power without energy accumulation in the system. One can therfore talk of high- 
energy impulse generation. 
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